
Object Oriented Programming
and its relevance to Software

Reuse

By Ryan Gerard
Innovim / NASA
GSFC

What are Objects?

� Software objects are conceptually similar to real-world
objects: they too consist of

– state
– related behavior

� An object stores its state in fields (variables in some
programming languages) and exposes its behavior
through methods (functions in some programming
languages).

� Methods operate on an object's internal state and
serve as the primary mechanism for object-to-object
communication.

Properties of Object Oriented
Programming

� Modularity: The source code for an object can be
written and maintained independently of the source
code for other objects.

� Information-hiding: By interacting only with an object's
methods, the details of its internal implementation
remain hidden from the outside world.

� Software Reuse: If an object already exists (perhaps
written by another software developer), you can use
that object in your program. This allows specialists to
implement/test/debug complex, task-specific objects,
which you can then trust to run in your own code.

� Pluggability and debugging ease: “If a bolt breaks, you
replace it, not the entire machine. ”

Example: A bicycle object

Inheritance

� Different kinds of objects often have a certain
amount in common with each other.

Implications to Reuse

� Existing objects can be reused entirely rather
than developed from scratch.

� For more specialized objects, complex objects
can be implemented by inheriting from simpler
objects (these most likely are already
available).

